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LE'ITER TO THE EDITOR 

Subdynamics approach to irreversibility in open systems 

P V CoveneytS and C1 George 
Facult6 des Sciences, CP 231, UniversitC Libre de Bruxelles, 1050 Bruxelles, Belgium 

Received 10 March 1988 

Abstract. A new, explicitly time-dependent formulation of subdynamics is presented for 
the treatment of irreversible processes in non-equilibrium statistical mechanics. The theory 
generalises the subdynamics concept from the case where the Liouville superoperator is 
time independent to include the situation in which it may possess an explicit time depen- 
dence. The scope of the approach is considerably broadened thereby; as one particular 
consequence, the non-unitary ('star-unitary') transformation theory of the Brussels school 
may be extended to deal with large systems interacting with time-dependent external fields. 
Hence a unified description of irreversibility in both isolated and open systems begins to 
emerge. 

The problem of explaining the irreversible evolution of macroscopic systems-as 
required by the second law of thermodynamics-on the basis of the microscopic 
dynamical equations has exercised the minds of many of the most eminent theoretical 
physicists of modern times. Two diametrically opposed schools of thought prevail: 
one maintains that irreversibility is actually an illusion, being brought about by our 
ignorance of the details of a purely reversible, dynamical description; the other asserts 
that irreversibility must be placed on an equally objective footing with reversibility 

Over the past few years, important research in support of the latter viewpoint has 
been performed by the Brussels group; this has clearly shown how irreversibility can 
arise as an intrinsic property of isolated dynamical systems possessing sufficient 
complexity [l]. It should be pointed out that this work differs from other objective 
approaches, which tend to derive kinetic equations rigorously in certain mathematical 
limits; their validity is generally restricted to finite times only [3-51. In complete 
contrast, much work in non-equilibrium statistical mechanics has sought to describe 
irreversibility by means of coarse graining [6,7]. 

One particularly favoured area concerns the study of the irreversible evolution of 
open systems, by which we mean systems interacting with the external world. Here 
one must be careful not to confuse rigour with fundamentality of description: even 
the most mathematically rigorous approaches [8,9] start from the assumption that 
irreversibility only arises by virtue of the coupling between system and environment-in 
flagrant contradiction with the second law. 

Recent research by members of the Brussels group has led to a clear understanding 
of the relation between reversible unitary-group dynamics and irreversible semigroup 

[I ,  21. 
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evolution for certain isolated classical dynamical systems. This has been achieved by 
means of a non-unitary transformation theory tied to appropriate ergodic properties 
[ 101. These results, while of considerable theoretical interest and importance, are too 
formal to be of value in applications to real systems (one has only to recall the difficulty 
in demonstrating that such systems possess the required properties). 

Another approach, which should be more fruitful from this standpoint (although 
surprisingly little by way of applications has hitherto been undertaken), is based on 
the concept of subdynamics [ 1 ,  1 1 ,  121. Originally introduced by Prigogine et a1 [ 131, 
it has played a central role in clarifying the relationship between dynamical and 
thermodynamic descriptions of large many-body systems [ 13,141. It has, moreover, 
proved to be a very powerful method for deriving kinetic equations in non-equilibrium 
statistical mechanics [ 151. 

It will be helpful to recall that the subdynamics approach to irreversible processes 
in large isolated systems starts from the Liouville-von Neumann equation for the 
density matrix p(  t ) :  

i dp /d t  = Lp( t )  (1) 

where L is written in perturbative form as Lo + SL, Lo being the Liouville superoperator 
for some solvable problem, and SL representing the interactions between the units 
defined thereby. 

On the basis of the dynamics-of-correlations description of the time evolution of 
a many-body system [16, 171, one introduces a complete set of correlation states {lv)}, 
which are eigenstates of Lo, and to which correspond spectral projections P‘”)  = I v)( V I  
with the property 

[Lo, P(”)] = 0. (2) 
In the case of dissipative systems, for which Lo possesses a continuous spectrum 

and the collision operator is non-vanishing [ 181, it is no longer possible to diagonalise 
the complete Liouvillian L [18, 191. Nevertheless, one may demonstrate that, in the 
thermodynamic limit, a new complete set of non-Hermitian projectors {n‘”)} exists, 
all of which commute with L itself 

[L, rl‘”’] = 0 (3) 

sp,n‘”’ (4) 

as well as satisfying the projection properties of idempotency and orthogonality 
n‘.’n‘Y’= 

together with the completeness relation 

n‘”’ is therefore the generalisation of P‘”’ for the case of an interacting dissipative 
system. Using equation (2) in equation ( l ) ,  it is easy to see that the projections 
p‘”’ = n ‘ ” ’ p  all evolve independently according to the Liouville-von Neumann 
equation : 

It is for this reason that one uses the term subdynamics. 
A non-unitary (‘star-unitary’) transformation theory, which generalises for dissipa- 

tive systems the unitary transformation theory of conventional quantum mechanics 
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[20], can then be framed in terms of the {ll"')} [ l ,  11,12,19]. Briefly, the A transforma- 
tion converts the density matrix to the physical representation ' p  : 

"p( t )  = A-'( t ) p (  1 ) .  (7)  

U ( t - - t O ) P ( t O )  (8) 

While p evolves according to a unitary group law 

where U ( ? )  = exp(-ilt), pp has an irreversible evolution described by a contractive 
semigroup [ 181 

" ( r )  = W * ( t -  to)"(to) (9) 

W*( t - t o )  = A-' U (  t - t0)A (10) 

for t 3 to ,  where 

(note that A+ # A-'). A Lyapunov functional constructed in the physical representation 
would behave as a dynamical analogue of the generally non-equilibrium entropy 

Until now, the approach to the construction of these operators has been based on 
the so-called resolvent formalism [ 11,19], which employs the Laplace transform method 
to write the solution of equation ( 1 )  in terms of a contour integral involving the 
resolvent ( z  - L)-'. The {II"'} are then defined from the singularities of this operator, 
through the introduction of a mathematically well defined regularisation procedure 
known as the i E  rule, when the limit of a continuous spectrum is taken [22]. In the 
thermodynamic limit, this rule is rendered complete by the additional intervention of 
a general theorem in the dynamics of correlations [23-251 which indicates the terms 
to be retained in this limit. 

All these considerations hold for isolated dissipative systems, for which L is time 
independent. However, the resolvent formalism cannot handle the important case 
when L has an explicit time dependence. Thus, the vast range of irreversible phenomena 
involving the influence of the external world on a system has hitherto remained outside 
the scope of this approach. 

We have now generalised the entire theory by developing an explicitly time- 
dependent formalism which extends directly to the case when L depends on the time. 
This is done by writing the solution to equation ( 1 )  in terms of the evolution operator 
U ( t )  of equation (8), whose perturbation expansion is 

[ l ,  12,211. 

m 
U ( t )  = (-i)"U0(*SLUo)" 

n = O  

where U'= exp(-iL,t), and the symbol A * B denotes the convolution of A and B. 
The general term in equation ( 1  1 )  may be written explicitly as 

(-TI-?* 

U,,(t) = jo' dTl 101-71 dr2  Jo dT3.. . 
1- -7  -T - -7  I 2 " '  11-1 

dTn U0(~,)6LU0(~2)SL~0(7,). . . I, 
X . . . SLUo( 7,,)6LU0( t - 71 - 7 2  - . . . - 7").  (12) 

By means of a recently formulated regularisation (analytical continuation) procedure 
[26] (which is the analogue of the i E  rule in the resolvent approach) we can extract, 
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from any particular term (or, equivalently, diagram [16,17]) in equation (12), the 
corresponding contribution to any given correlation component of the density matrix 
p ( t )  in the thermodynamic limit in which the spectrum of Lo becomes continuous. 

Using this procedure, together with the general theorem referred to above [23,24], 
one of us (PVC) has shown that the complete correlation subdynamics of a large 
dynamical system may be obtained within an explicitly time-dependent formalism [27]. 
Thus, with the proviso that the interactions are sufficiently regular for the integrals to 
exist and converge, one may define a complete set of projectors {II“’)}, which obey 
exactly the same relations as those stated earlier, namely equations (3)-( 5).  

If the system interacts with a generally time-dependent external field, the Liouville- 
von Neumann equation becomes 

i ap/at  = L ~ (  t ) p (  t )  (13) 

with LF( t )  = L + SLF( t ) ,  L being as previously defined and SLF( t )  representing the 
system-surroundings interaction. Under these circumstances, the II‘ ” ’  subspaces are 
themselves coupled in a fashion similar to that of the correlation states, P‘”’ .  Utilising 
all the results described thus far, and employing the subdynamics methodology a 
second time, one of us (PVC) has also shown that a new complete set of time-dependent 
non-Hermitian projectors { P ‘ ” ’ ( t ) }  exists [28]. These are an extension of the {II‘”)}, 
in the same sense that the latter are an extension of the {P‘” ’ } ;  they satisfy similar 
relations, although the generalisation is non-trivial: 

P ‘ q  t )P‘”’(  t )  = SPJ(”’ (  t )  (14) 

and 

” 

In addition, the P(”’( t )  obey an intertwining (or pseudocommutation) relation with 
the exact evolution operator associated with equation (13) 

P(.)(  t )  U”( t, t o )  = UF( t ,  fO)P(” ) (  to). (16) 

‘ ” p (  t )  satisfy a gen- These three relations ensure that the projections P(”’( t ) p (  t )  
eralised subdynamics, in the sense that 

. a( ” )p  
1 - at = LF( t ) ‘ ” ’ p (  t ) .  

The results summarised here-full proofs and details of which have now appeared 
elsewhere [26-29]-represent a major generalisation of earlier work by Balescu and 
Misguich, who established the existence of a superkinetic projector P(”)(  t )  [30]. This 
operator enabled them to write down an exact kinetic equation in the presence of 
arbitrary external fields, from which many special cases can be deduced [31]. A 
remarkable additional feature is that the entire evolution of the system is confined 
wholly within this instantaneous subspace, provided that the initial condition is such 
that the field is switched on after the system has reached a steady or equilibrium state 
(i.e. provided that p ( t 0 )  = I I ‘ ” p ( t o ) ) .  

It is important to grasp the repetitive nature of the approach we have employed. 
In the time-dependent perturbative formalism, the theory is developed in terms of 
convolution series in a hierarchical manner (one has to deal with convolutions within 
convolutions). It should therefore be clear that all kinds of situations can now be 
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brought within the ambit of the subdynamics method. For example, in principle one 
can treat time-independent Liouvillians with several kinds of interactions present (e.g. 
L = Lo+ S L ,  + SL2),  and systems interacting simultaneously with more than one external 
field (e.g. LF( t )  = L+ SL:( t )  + SL:( t ) ) .  The latter situation is of obvious significance 
in the context of laser-plasma interactions. 

Note that we have placed no restriction on the nature of the external field, which 
can in principle be of arbitrary spatial inhomogeneity and time dependence. Indeed, 
all the results quoted here are algebraically exact in the thermodynamic limit, and do 
not involve any dynamical approximations. However, we have implicitly assumed that 
the various interactions (within the system and with the surroundings) are sufficiently 
regular to ensure existence and convergence of the various integrals which arise in the 
formalism. A set of mathematically rigorous necessary and sufficient conditions on 
the Liouvillian is still required which would guarantee the existence of subdynamics. 
Until such conditions are formulated, it is necessary to check for existence in each 
particular case under study. 

An important property of the projectors P ( ” ) (  t )  is that, like n“”, they are no longer 
time-reversal invariant (as a result of the analytical continuation used to define them): 
this is why they are non-Hermitian (actually ‘star-Hermitian’ [19]). Hence we are led 
to an extension of the non-unitary transformation theory [ l ,  11,191 for open systems, 
through the relation 

(18) P c v r (  t )  = A( t )P‘”’A-’ (  t ) .  

Thus the physical representation ”p is obtained from 

” p ( t ) = A - ’ ( t ) p ( t ) .  

”p evolves irreversibly according to the generalised version of equations (9) and (10): 

” p ( t )  = W*(t, t O > ” P ( t O )  (20) 

with 

W*( t, to)  = A-’( t )  VF(t, to)A(to) 

and t 5 to;  a suitable candidate for the microscopic entropy operator would be 

M (  t )  = A’(t)A( t ) .  (22) 

Hence a microscopic description of irreversibility and entropy in such open systems 
can begin to be forged. One should note, however, that there is a certain indeterminacy 
associated with the definition of A, the complete eradication of which remains as an 
open problem [12]. 

From a fundamental point of view, the existence of the A transformation has 
important consequences for the quantum theory of measurement. One can show that 
A is a non-factorisable superoperator [21]; as a result, it transforms pure states into 
mixtures. In this way, one achieves in principle a resolution of the measurement 
problem by incorporating the irreversible act of measurement within the macroscopic 
aspect of the measuring apparatus. 

We thank Professor I Prigogine for his interest in this work. PVC is grateful to Professor 
0 Penrose FRS for helpful discussions and is indebted to the Wiener-Anspach Founda- 
tion for a Fellowship, during the tenure of which this research was performed. 
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